Inverse scattering with non-overdetermined data

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniqueness theorem for inverse scattering problem with non-overdetermined data

Let q(x) be real-valued compactly supported sufficiently smooth function. It is proved that the scattering data A(−β, β, k) ∀β ∈ S, ∀k > 0 determine q uniquely. MSC: 35P25, 35R30, 81Q05; PACS: 03.65.Nk

متن کامل

Uniqueness theorem for an inverse scattering problem with non-overdetermined data

Since the forties of the last century, the physicists were interested in the uniqueness of the determination of a physical system by its S-matrix. If the physical system is described by a Hamiltonian of the type H = −∇2 + q(x), then the S-matrix is in one-to-one correspondence with the scattering amplitude A, S = I + ik 2π A, where I is the identity operator and A is an operator in L2(S2) with ...

متن کامل

Uniqueness of the solution to inverse scattering problem with non-overdetermined data

Let q(x) be a real-valued compactly supported sufficiently smooth function. It is proved that the scattering data A(−β, β, k) ∀β ∈ S, ∀k > 0, determine q uniquely. Under the same assumptions on q(x) it is proved that the scattering data A(β, α0, k) ∀β ∈ S, ∀k > 0, and a fixed α0, the direction of the incident plane wave, determine q uniquely. The above scattering data are non-overdetermined in ...

متن کامل

An iterative approach to non-overdetermined inverse scattering at fixed energy

We propose an iterative approximate reconstruction algorithm for non-overdetermined inverse scattering at fixed energy E with incomplete data in dimension d ≥ 2. In particular, we obtain rapidly converging approximate reconstructions for this inverse scattering for E → +∞.

متن کامل

Approximate Lipschitz stability for non-overdetermined inverse scattering at fixed energy

Abstract. We prove approximate Lipschitz stability for non-overdetermined inverse scattering at fixed energy with incomplete data in dimension d ≥ 2. Our estimates are given in uniform norm for coefficient difference and related stability precision efficiently increases with increasing energy and coefficient difference regularity. In addition, our estimates are rather optimal even in the Born a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physics Letters A

سال: 2009

ISSN: 0375-9601

DOI: 10.1016/j.physleta.2009.06.033